Note

Existence of the Solution of a Nonlinear Integro-Differential Equation

The existence and uniqueness of the solution $u(t)$ of the equation

$$
\begin{equation*}
\frac{d u(t)}{d t}+a(t) u(t)+\int_{0}^{t} d s k(t, s) u(t-s) u(s)=f(t), \quad 0 \leqslant t \leqslant T, u(0)=c \tag{1}
\end{equation*}
$$

was studied by Chang and Day [1], and more recently by Tang and Yuan [2]. Here $a(t), f(t)$, and $k(t, s)$ are known functions of t and s in [$0, T]$. Equation (1) is easily reduced to an equivalent fixed-point equation [1]:

$$
\begin{align*}
u(t)= & c e^{-A(t)}+\int_{0}^{t} d \tau e^{-[A(t)-A(\tau)]} f(\tau) \\
& -\int_{0}^{t} d \tau e^{-[A(t)-A(\tau)]} \int_{0}^{\tau} d s k(\tau, s) u(\tau-s) u(s) \\
= & (F(u))(t) \tag{2}
\end{align*}
$$

where $A(t)=\int_{0}^{t} d \tau a(\tau)$. In [2], an equation in $u(t) e^{A(t)}$ similar to (2) was considered. However, both of the formulations are equivalent and the arguments of one are applicable to the other with obvious replacements.

With u_{0} given, let $\left\{u_{n}\right\}$ be defined by $u_{n+1}=F\left(u_{n}\right), n=0,1,2, \ldots ;\left\{u_{n}\right\}$ will be called the iterative sequence generated by u_{0}. It was shown in [1] that if $a(t) \geqslant 0$, $|c|+\int_{0}^{T} d t|f(t)| \leqslant \frac{1}{2}$ and $\int_{0}^{T} d \tau \int_{0}^{t} d s|k(\tau, s)|<\frac{1}{2}$, then the iterative sequence generated by $u_{0}=F(0)$ converges uniformly to a unique solution of (1). In [2], the existence and uniqueness of the solution is established as long as $a(t), f(t)$, and $k(t, s)$ are continuous functions. Existence in [2] was deduced by invoking Schauder's fixed-point theorem. The result in [1] was concluded essentially by the contraction mapping theorem. The conditions of [1,2] describe overlapping classes of problems. For problems encountered in practice, the condition of [1] is quite restrictive while that of [2] covers a reasonably large class. However, the result of [1] is constructive and thus may be used to approximate the solution.

This note shows that the iterative sequences of the type considered in [1] converge uniformly to the unique solution of (1) with a milder assumption than that of [2]. To be precise, we assume that
(i) functions $a(t)$ and $f(t)$ are absolutely integrable on [0,T]; and
(ii) $\sup _{\tau \in[0, T]} \int_{0}^{\tau} d s|k(\tau, s)|$ exists.

The assumed integrability of $|a(t)|$ implies that $|A(t)-A(\tau)|$ for each t, τ in $[0, T]$ is bounded by a constant independent of t and τ. Assumptions (i) and (ii) are then easily seen to imply that

$$
\begin{equation*}
|g(t)|=|(F(0))(t)| \leqslant \xi \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\tau} d s|\kappa(t, \tau, s)|=\int_{0}^{\tau} d s\left|e^{-[A(t)-A(\tau)]} k(\tau, s)\right| \leqslant M \tag{4}
\end{equation*}
$$

where ξ and M are some constants, independent of t and τ. Let h and α be some constants such that $h \geqslant 2 \xi$ and $\alpha \geqslant h^{2} M / \xi$ and define the set Q as

$$
Q=\left\{v:|v(t)| \leqslant h e^{x t} \text { and } \int_{0}^{T}|v(t)| d t \text { exists }\right\} .
$$

We state the result as
Theorem. Let assumptions (i) and (ii) be satisfied. Then the iterative sequence generated by an arbitrary u_{0} in Q converges uniformly to the unique solution u of (1) in Q.

Proof. We divide the proof in the following four steps.
Step 1. $u_{0} \in Q$ implies that $u_{n} \in Q$ for $n=1,2,3, \ldots$.
Proof. The result will follow if $v \in Q$ implies that $F(v) \in Q$, which may be deduced by slightly adjusting the argument of Step 3, Theorem 2.1 of [2] as shown below. With $v \in Q$,

$$
\begin{aligned}
|(F(v))(t)| & \leqslant|g(t)|+\int_{0}^{t} d \tau \int_{0}^{\tau} d s|\kappa(t, \tau, s)||v(\tau-s)||v(s)| \\
& \leqslant \xi+h^{2} M \int_{0}^{t} d \tau e^{\alpha \tau} \\
& \leqslant \xi+\frac{h^{2} M}{\alpha} e^{\alpha t} \\
& \leqslant h e^{\alpha t}
\end{aligned}
$$

Step 2. For each $t,\left|e_{n}(t)\right|=\left|\left(u_{n+1}-u_{n}\right)(t)\right| \leqslant(2 h / n!)(2 h M t)^{n} e^{\alpha t}$.
Proof. Since u_{0} and u_{1} are in Q, the statement is true for $n=0$. It follows from the definitions that

$$
e_{n+1}(t)=-\int_{0}^{t} d \tau \int_{0}^{\tau} d s\left[\kappa(t, \tau, s) u_{n+1}(\tau-s)+\kappa(t, \tau, \tau-s) u_{n}(\tau-s)\right] e_{n}(s)
$$

Assuming that the estimate is valid for $e_{n}(t)$, and using the fact that $u_{n} \in Q$ for each n from Step 1, we have

$$
\begin{aligned}
\left|e_{n+1}(t)\right| & \leqslant \frac{2 h^{2}}{n!}(2 h M)^{n} \int_{0}^{t} d \tau \tau^{n} e^{\alpha \tau} \int_{0}^{\tau} d s[|\kappa(t, \tau, s)|+|\kappa(t, \tau, \tau-s)|] \\
& \leqslant \frac{2 h}{n!}(2 h M)^{n+1} e^{\alpha \tau} \int_{0}^{t} d \tau \tau^{n} \\
& =\frac{2 h}{(n+1)!}(2 h M t)^{n+1} e^{\alpha t}
\end{aligned}
$$

The result for each n follows by induction.
Step 3. $u_{n}(t) \rightarrow_{n \rightarrow \infty} u(t) \in Q$, uniformly with respect to $t \in[0, T]$.
Proof. An argument is standard: From Step 2, the series $w_{n}(t)=\sum_{j=0}^{n} e_{j}(t)$ is absolutely and uniformly convergent for

$$
\sum_{j=0}^{n}\left|e_{j}(t)\right| \leqslant 2 h e^{x t} \sum_{j=0}^{n} \frac{(2 h M t)^{j}}{j!} \xrightarrow[n \rightarrow \infty]{ } 2 h e^{[x+2 h M] t}
$$

Consequently,

$$
u(t)=\lim _{n \rightarrow \infty} u_{n}(t)=\lim _{n \rightarrow \infty}\left[u_{0}+\sum_{j=0}^{n-1} e_{j}(t)\right]
$$

exists. Uniform convergence of $\left\{\left|w_{n}\right|\right\}$ implies the same for $\left\{w_{n}\right\}$ and hence for $\left\{u_{n}\right\}$. It is clear that $u \in Q$.

Step 4. u is the unique solution of (1) in Q.
Proof. From Step 3, we have

$$
u(t)=\lim _{n \rightarrow \infty} u_{n+1}(t)=g(t)-\lim _{n \rightarrow \infty} \int_{0}^{t} d \tau \int_{0}^{\tau} d s \kappa(t, \tau, s) u_{n}(\tau-s) u_{n}(s)
$$

The integrand is bounded by an integrable function $h^{2}|\kappa(t, \tau, s)| e^{\alpha \tau}$. Hence, by the Lebesgue dominated convergence theorem and Step 3, we have

$$
\begin{aligned}
u(t) & =g(t)-\int_{0}^{t} d \tau \int_{0}^{\tau} d s \kappa(t, \tau, s) u(\tau-s) u(s) \\
& =(F(u))(t)
\end{aligned}
$$

This implies that u is a solution of (1). Let $v \in Q$ be a different solution. Then

$$
\begin{aligned}
\delta(t) & =u(t)-v(t) \\
& =-\int_{0}^{t} d \tau \int_{0}^{\tau} d s[\kappa(t, \tau, s) u(\tau-s)+\kappa(t, \tau, \tau-s) v(\tau-s)] \delta(s) .
\end{aligned}
$$

Since u, v are in $Q,|\delta(s)| \leqslant 2 h e^{x s}$. As in Step 2, it follows that

$$
|\delta(t)| \leqslant \frac{2 h}{n!}(2 h M t)^{n} e^{\alpha t}
$$

for each n, and hence $\delta(t)=0$.
Instead of (2), one may consider the fixed-point equation,

$$
u(t)=c+\int_{0}^{t} d \tau\left[f(\tau)-a(\tau) u(\tau)-\int_{0}^{\tau} d s k(\tau, s) u(\tau-s) u(s)\right]
$$

which is also equivalent to (1). The arguments used in the present note lead to similar conclusions.

References

1. S. H. Chang and J. T. Day, J. Comput. Phys. 26, 162 (1978).
2. T. Tang and W. Yuan, J. Comput. Phys. 72, 486 (1987).

Received: January 29, 1988; revised: May 31, 1988
S. R. Vatsya

Whiteshell Nuclear Research Establishment Atomic Energy of Canada Limited
Pinawa, Manitoba, Canada ROE IIO

